
nisteag Documentation
Release 0.4.0

Diogo Baeder

September 27, 2016

Contents

1 Overview 3

2 Installation 5

3 Examples 7
3.1 Library . 7
3.2 Command-line . 7

4 Development 9

5 Indices and tables 11

i

ii

nisteag Documentation, Release 0.4.0

An implementation, in Python, of recommendations from the NIST Electronic Authentication Guideline The starting
implementation will be for Special Publication 800-63-2: http://dx.doi.org/10.6028/NIST.SP.800-63-2

The full documentation is here: http://nisteag.readthedocs.io/

Contents:

Contents 1

http://dx.doi.org/10.6028/NIST.SP.800-63-2
http://nisteag.readthedocs.io/

nisteag Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Overview

This Python package was built with the intention of implementing most of the recommendations in NIST Spe-
cial Publication 800-63-2, titled “Electronic Authentication Guideline”. This is the link for the document:
http://dx.doi.org/10.6028/NIST.SP.800-63-2 (if the link doesn’t work, you can download the document from
here)

The main reason behind this implementation is to cover the need to check if passwords or pass-phrases meet minimum
requirements in the system that uses it; Since “strong password” is mostly used in a subjective manner, I felt the need
of a more research-based way of determining how strong or weak a password is. And this publication by NIST seemed
to be the best resource available for this.

The first published version will contain checkers for levels 1 and 2 for Memorized Secret Tokens, but the intention is to
organically grow the package and include implementation for other recommendations, and not only token verification.

3

http://dx.doi.org/10.6028/NIST.SP.800-63-2

nisteag Documentation, Release 0.4.0

4 Chapter 1. Overview

CHAPTER 2

Installation

To install nisteag, just run:

$ pip install nisteag

You can also use easy_install:

$ easy_install nisteag

The package also installs a command-line script; see Command-line

5

nisteag Documentation, Release 0.4.0

6 Chapter 2. Installation

CHAPTER 3

Examples

3.1 Library

Checking that a password meets the minimum requirements:

from nisteag.token.requirements.memorized import BaseThrottler, Level1Checker

class MyThrottler(BaseThrottler):
def check(self, username, token):

"""Verify that the token hasn't failed too many times and too frequently."""

checker = Level1Checker(MyThrottler())

checker.check('This Is a b1g and r3l3v4nt passwrod!')
checker.check('this') # will fail, however.

also fails, since the token matches the provided word dictionary
checker.check('known one', dictionary=['known one', 'something else'])

also fails, since it's an anagram of the username
checker.check('silent', username='listen')

You can also just calculate the entropy directly, if you want:

from nisteag.entropy import EntropyCalculator

calculator = EntropyCalculator()
calculator.calculate('abcd') # returns 10.0

3.2 Command-line

You can also check the entropy of a password from the command-line:

$ check-entropy abcd
10.0

$ check-entropy # will pick the password via user input

7

nisteag Documentation, Release 0.4.0

8 Chapter 3. Examples

CHAPTER 4

Development

This is the repository for the project: https://github.com/yougov/nisteag

9

https://github.com/yougov/nisteag

nisteag Documentation, Release 0.4.0

10 Chapter 4. Development

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

11

	Overview
	Installation
	Examples
	Library
	Command-line

	Development
	Indices and tables

